Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659841

RESUMO

Background: Heart rhythm relies on complex interactions between the electrogenic membrane proteins and intracellular Ca 2+ signaling in sinoatrial node (SAN) myocytes; however, the mechanisms underlying the functional organization of the proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, however the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods: In vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca 2+ imaging, immunofluorescent and electron microscopy analysis were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results: In both mouse and human SANs, caveolae compartmentalized HCN4, Ca v 1.2, Ca v 1.3, Ca v 3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca 2+ release events (LCRs), which diffuse across ∼15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca 2+ current, a negative shift of the HCN current ( I f ) activation curve, and 40% reduction of Na + /Ca 2+ -exchanger function. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions: SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially representing a new dimension of SAN remodeling and providing a newly recognized target for therapy.

2.
ACS Meas Sci Au ; 3(4): 239-257, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37600457

RESUMO

Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.

3.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645882

RESUMO

Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.

4.
Elife ; 122023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341381

RESUMO

Hyperpolarized-activated and cyclic nucleotide-gated (HCN) channels are the only members of the voltage-gated ion channel superfamily in mammals that open upon hyperpolarization, conferring them pacemaker properties that are instrumental for rhythmic firing of cardiac and neuronal cells. Activation of their voltage-sensor domains (VSD) upon hyperpolarization occurs through a downward movement of the S4 helix bearing the gating charges, which triggers a break in the alpha-helical hydrogen bonding pattern at the level of a conserved Serine residue. Previous structural and molecular simulation studies had however failed to capture pore opening that should be triggered by VSD activation, presumably because of a low VSD/pore electromechanical coupling efficiency and the limited timescales accessible to such techniques. Here, we have used advanced modeling strategies, including enhanced sampling molecular dynamics simulations exploiting comparisons between non-domain swapped voltage-gated ion channel structures trapped in closed and open states to trigger pore gating and characterize electromechanical coupling in HCN1. We propose that the coupling mechanism involves the reorganization of the interfaces between the VSD helices, in particular S4, and the pore-forming helices S5 and S6, subtly shifting the balance between hydrophobic and hydrophilic interactions in a 'domino effect' during activation and gating in this region. Remarkably, our simulations reveal state-dependent occupancy of lipid molecules at this emergent coupling interface, suggesting a key role of lipids in hyperpolarization-dependent gating. Our model provides a rationale for previous observations and a possible mechanism for regulation of HCN channels by the lipidic components of the membrane.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Animais , Ativação do Canal Iônico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Lipídeos de Membrana , Simulação de Dinâmica Molecular , Mamíferos/metabolismo
5.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995319

RESUMO

In this issue, Villalba-Galea (2023. J. Gen. Physiol.https://doi.org/10.1085/jgp.202313371) expresses interest in our recently published work (Cowgill and Chanda. 2023. J. Gen. Physiol.https://doi.org/10.1085/jgp.202112883). Our response points out the deficiencies in the alternative explanation proposed by Villalba-Galea to account for our findings on hysteresis (or lack thereof) in steady state charge-voltage curves of Shaker potassium channel.


Assuntos
Canais de Potássio , Canais de Potássio/fisiologia
7.
J Gen Physiol ; 155(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36692860

RESUMO

Charge-voltage curves of many voltage-gated ion channels exhibit hysteresis but such curves are also a direct measure of free energy of channel gating and, hence, should be path-independent. Here, we identify conditions to measure steady-state charge-voltage curves and show that these are curves are not hysteretic. Charged residues in transmembrane segments of voltage-gated ion channels (VGICs) sense and respond to changes in the electric field. The movement of these gating charges underpins voltage-dependent activation and is also a direct metric of the net free-energy of channel activation. However, for most voltage-gated ion channels, the charge-voltage (Q-V) curves appear to be dependent on initial conditions. For instance, Q-V curves of Shaker potassium channel obtained by hyperpolarizing from 0 mV is left-shifted compared to those obtained by depolarizing from a holding potential of -80 mV. This hysteresis in Q-V curves is a common feature of channels in the VGIC superfamily and raises profound questions about channel energetics because the net free-energy of channel gating is a state function and should be path independent. Due to technical limitations, conventional gating current protocols are limited to test pulse durations of <500 ms, which raises the possibility that the dependence of Q-V on initial conditions reflects a lack of equilibration. Others have suggested that the hysteresis is fundamental thermodynamic property of voltage-gated ion channels and reflects energy dissipation due to measurements under non-equilibrium conditions inherent to rapid voltage jumps (Villalba-Galea. 2017. Channels. https://doi.org/10.1080/19336950.2016.1243190). Using an improved gating current and voltage-clamp fluorometry protocols, we show that the gating hysteresis arising from different initial conditions in Shaker potassium channel is eliminated with ultra-long (18-25 s) test pulses. Our study identifies a modified gating current recording protocol to obtain steady-state Q-V curves of a voltage-gated ion channel. Above all, these findings demonstrate that the gating hysteresis in Shaker channel is a kinetic phenomenon rather than a true thermodynamic property of the channel and the charge-voltage curve is a true measure of the net-free energy of channel gating.


Assuntos
Ativação do Canal Iônico , Canais de Potássio , Canais de Potássio/metabolismo , Potenciais da Membrana/fisiologia , Ativação do Canal Iônico/fisiologia , Superfamília Shaker de Canais de Potássio , Oócitos/metabolismo
8.
Biophys J ; 121(6): 1105-1114, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35120902

RESUMO

Synthetic ion channels based on benzo(crown-ether) compounds have been previously reported to function as ion-selective channels in planar lipid bilayers, with hydrogen bonding networks implicated in the formation of self-aggregated complexes. Herein, we report the synthesis and characterization of two new families of benzo(crown-ether) compounds, termed monoacylated and monoalkylated benzo(crown-ethers) (MABCE), both of which lack hydrogen bond donors. Depending on the length of alkyl chain substituent and the size of macrocycle, MABCE compounds inhibit bacterial growth and transport ions across biological membranes. Single-channel recordings show that the activity is higher in the presence of K+ as compared with Na+; however, under bionic conditions, open channels do not exhibit any preference between the two ions. These findings reveal that the ionic preference of benzo(crown-ether) compounds is either due to the regulation of assembly of ion-conducting supramolecular complexes or its membrane insertion by cations, as opposed to ion-selective transport through these scaffolds. Furthermore, our data show that the H-bonding network is not needed to form these assemblies in the membrane.


Assuntos
Éteres de Coroa , Cátions , Éteres de Coroa/química , Ligação de Hidrogênio , Canais Iônicos/química , Bicamadas Lipídicas/química
9.
Nature ; 595(7868): 606-610, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194042

RESUMO

Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding1. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding2,3, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations. Here we overcome these challenges using nanophotonic zero-mode waveguides4 to directly resolve binding dynamics of individual ligands to multimeric HCN1 and HCN2 ion channels. We show that cAMP binds independently to all four subunits when the pore is closed, despite a subsequent conformational isomerization to a flip state at each site. The different dynamics in binding and isomerization are likely to underlie physiologically distinct responses of each isoform to cAMP5 and provide direct validation of the ligand-induced flip-state model6-9. This approach for observing stepwise binding in multimeric proteins at physiologically relevant concentrations can directly probe binding allostery at single-molecule resolution in other intact membrane proteins and receptors.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Engenharia de Proteínas , Isoformas de Proteínas , Multimerização Proteica , Imagem Individual de Molécula
10.
J Mol Biol ; 433(17): 167104, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34139217

RESUMO

Inter- and intra-molecular allosteric interactions underpin regulation of activity in a variety of biological macromolecules. In the voltage-gated ion channel superfamily, the conformational state of the voltage-sensing domain regulates the activity of the pore domain via such long-range allosteric interactions. Although the overall structure of these channels is conserved, allosteric interactions between voltage-sensor and pore varies quite dramatically between the members of this superfamily. Despite the progress in identifying key residues and structural interfaces involved in mediating electromechanical coupling, our understanding of the biophysical mechanisms remains limited. Emerging new structures of voltage-gated ion channels in various conformational states will provide a better three-dimensional view of the process but to conclusively establish a mechanism, we will also need to quantitate the energetic contribution of various structural elements to this process. Using rigorous unbiased metrics, we want to compare the efficiency of electromechanical coupling between various sub-families in order to gain a comprehensive understanding. Furthermore, quantitative understanding of the process will enable us to correctly parameterize computational approaches which will ultimately enable us to predict allosteric activation mechanisms from structures. In this review, we will outline the challenges and limitations of various experimental approaches to measure electromechanical coupling and highlight the best practices in the field.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Transdução de Sinais/fisiologia , Regulação Alostérica/fisiologia , Humanos
11.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782120

RESUMO

Temperature-dependent regulation of ion channel activity is critical for a variety of physiological processes ranging from immune response to perception of noxious stimuli. Our understanding of the structural mechanisms that underlie temperature sensing remains limited, in part due to the difficulty of combining high-resolution structural analysis with temperature stimulus. Here, we use NMR to compare the temperature-dependent behavior of Shaker potassium channel voltage sensor domain (WT-VSD) to its engineered temperature sensitive (TS-VSD) variant. Further insight into the molecular basis for temperature-dependent behavior is obtained by analyzing the experimental results together with molecular dynamics simulations. Our studies reveal that the overall secondary structure of the engineered TS-VSD is identical to the wild-type channels except for local changes in backbone torsion angles near the site of substitution (V369S and F370S). Remarkably however, these structural differences result in increased hydration of the voltage-sensing arginines and the S4-S5 linker helix in the TS-VSD at higher temperatures, in contrast to the WT-VSD. These findings highlight how subtle differences in the primary structure can result in large-scale changes in solvation and thereby confer increased temperature-dependent activity beyond that predicted by linear summation of solvation energies of individual substituents.


Assuntos
Engenharia de Proteínas , Superfamília Shaker de Canais de Potássio/química , Escherichia coli , Temperatura Alta , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Superfamília Shaker de Canais de Potássio/genética
12.
Bio Protoc ; 11(24): e4261, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087920

RESUMO

Prokaryotic ion channels have been instrumental in furthering our understanding of many fundamental aspects of ion channels' structure and function. However, characterizing the biophysical properties of a prokaryotic ion channel in a native membrane system using patch-clamp electrophysiology is technically challenging. Patch-clamp is regarded as a gold standard technique to study ion channel properties in both native and heterologous expression systems. The presence of a cell wall and the small size of bacterial cells makes it impossible to directly patch clamp using microelectrodes. Here, we describe a method for the preparation of giant E. coli spheroplasts in order to investigate the electrophysiological properties of bacterial cell membranes. Spheroplasts are formed by first inhibiting bacterial cell wall synthesis, followed by enzymatic digestion of the outer cell wall in the presence of a permeabilizing agent. This protocol can be used to characterize the function of any heterologous ion channels or ion transporters expressed in E. coli membranes.

13.
Elife ; 92020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33274718

RESUMO

Physiological response to thermal stimuli in mammals is mediated by a structurally diverse class of ion channels, many of which exhibit polymodal behavior. To probe the diversity of biophysical mechanisms of temperature-sensitivity, we characterized the temperature-dependent activation of MthK, a two transmembrane calcium-activated potassium channel from thermophilic archaebacteria. Our functional complementation studies show that these channels are more efficient at rescuing K+ transport at 37°C than at 24°C. Electrophysiological activity of the purified MthK is extremely sensitive (Q10 >100) to heating particularly at low-calcium concentrations whereas channels lacking the calcium-sensing RCK domain are practically insensitive. By analyzing single-channel activities at limiting calcium concentrations, we find that temperature alters the coupling between the cytoplasmic RCK domains and the pore domain. These findings reveal a hitherto unexplored mechanism of temperature-dependent regulation of ion channel gating and shed light on ancient origins of temperature-sensitivity.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Methanobacterium/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Arqueais/genética , Clonagem Molecular , Escherichia coli/metabolismo , Teste de Complementação Genética , Methanobacterium/genética , Modelos Genéticos , Canais de Potássio Cálcio-Ativados/genética , Domínios Proteicos , Temperatura
14.
Elife ; 92020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267232

RESUMO

Single-molecule approaches provide enormous insight into the dynamics of biomolecules, but adequately sampling distributions of states and events often requires extensive sampling. Although emerging experimental techniques can generate such large datasets, existing analysis tools are not suitable to process the large volume of data obtained in high-throughput paradigms. Here, we present a new analysis platform (DISC) that accelerates unsupervised analysis of single-molecule trajectories. By merging model-free statistical learning with the Viterbi algorithm, DISC idealizes single-molecule trajectories up to three orders of magnitude faster with improved accuracy compared to other commonly used algorithms. Further, we demonstrate the utility of DISC algorithm to probe cooperativity between multiple binding events in the cyclic nucleotide binding domains of HCN pacemaker channel. Given the flexible and efficient nature of DISC, we anticipate it will be a powerful tool for unsupervised processing of high-throughput data across a range of single-molecule experiments.


During a chemical or biological process, a molecule may transition through a series of states, many of which are rare or short-lived. Advances in technology have made it easier to detect these states by gathering large amounts of data on individual molecules. However, the increasing size of these datasets has put a strain on the algorithms and software used to identify different molecular states. Now, White et al. have developed a new algorithm called DISC which overcomes this technical limitation. Unlike most other algorithms, DISC requires minimal input from the user and uses a new method to group the data into categories that represent distinct molecular states. Although this new approach produces a similar end-result, it reaches this conclusion much faster than more commonly used algorithms. To test the effectiveness of the algorithm, White et al. studied how individual molecules of a chemical known as cAMP bind to parts of proteins called cyclic nucleotide binding domains (or CNDBs for short). A fluorescent tag was attached to single molecules of cAMP and data were collected on the behavior of each molecule. Previous evidence suggested that when four CNDBs join together to form a so-called tetramer complex, this affects the binding of cAMP. Using the DISC system, White et al. showed that individual cAMP molecules interact with all four domains in a similar way, suggesting that the binding of cAMP is not impacted by the formation of a tetramer complex. Analyzing this data took DISC less than 20 minutes compared to existing algorithms which took anywhere between four hours and two weeks to complete. The enhanced speed of the DISC algorithm could make it easier to analyze much larger datasets from other techniques in addition to fluorescence. This means that a greater number of states can be sampled, providing a deeper insight into the inner workings of biological and chemical processes.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imagem Individual de Molécula/métodos , Aprendizado de Máquina não Supervisionado , Algoritmos , Corantes Fluorescentes , Software
15.
RSC Adv ; 10(66): 40391-40394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33732448

RESUMO

The cytotoxicity of dialkylated lariat ethers has been previously attributed to their ionophoric properties. Herein, we provide evidence that these effects are due to loss of membrane integrity rather than ion transport, a finding with important implications for the future design of synthetic ionophores.

16.
Elife ; 82019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774399

RESUMO

In contrast to most voltage-gated ion channels, hyperpolarization- and cAMP gated (HCN) ion channels open on hyperpolarization. Structure-function studies show that the voltage-sensor of HCN channels are unique but the mechanisms that determine gating polarity remain poorly understood. All-atom molecular dynamics simulations (~20 µs) of HCN1 channel under hyperpolarization reveals an initial downward movement of the S4 voltage-sensor but following the transfer of last gating charge, the S4 breaks into two sub-helices with the lower sub-helix becoming parallel to the membrane. Functional studies on bipolar channels show that the gating polarity strongly correlates with helical turn propensity of the substituents at the breakpoint. Remarkably, in a proto-HCN background, the replacement of breakpoint serine with a bulky hydrophobic amino acid is sufficient to completely flip the gating polarity from inward to outward-rectifying. Our studies reveal an unexpected mechanism of inward rectification involving a linker sub-helix emerging from HCN S4 during hyperpolarization.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Regulação Alostérica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
17.
J Gen Physiol ; 151(10): 1163-1172, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31431491

RESUMO

Key advances in single particle cryo-EM methods in the past decade have ushered in a resolution revolution in modern biology. The structures of many ion channels and transporters that were previously recalcitrant to crystallography have now been solved. Yet, despite having atomistic models of many complexes, some in multiple conformations, it has been challenging to glean mechanistic insight from these structures. To some extent this reflects our inability to unambiguously assign a given structure to a particular physiological state. One approach that may allow us to bridge this gap between structure and function is voltage clamp fluorometry (VCF). Using this technique, dynamic conformational changes can be measured while simultaneously monitoring the functional state of the channel or transporter. Many of the important papers that have used VCF to probe the gating mechanisms of channels and transporters have been published in the Journal of General Physiology In this review, we provide an overview of the development of VCF and discuss some of the key problems that have been addressed using this approach. We end with a brief discussion of the outlook for this technique in the era of high-resolution structures.


Assuntos
Fluorometria/métodos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Técnicas de Patch-Clamp/métodos , Animais , Transporte Biológico
18.
Biophys J ; 117(2): 388-398, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301804

RESUMO

The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.


Assuntos
Glicerol/análogos & derivados , Glicerol/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Superfamília Shaker de Canais de Potássio/química , Sequência de Aminoácidos , Domínios Proteicos , Estrutura Secundária de Proteína
19.
Science ; 363(6433): 1278-1279, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898917
20.
Proc Natl Acad Sci U S A ; 116(2): 670-678, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587580

RESUMO

Despite sharing a common architecture with archetypal voltage-gated ion channels (VGICs), hyperpolarization- and cAMP-activated ion (HCN) channels open upon hyperpolarization rather than depolarization. The basic motions of the voltage sensor and pore gates are conserved, implying that these domains are inversely coupled in HCN channels. Using structure-guided protein engineering, we systematically assembled an array of mosaic channels that display the full complement of voltage-activation phenotypes observed in the VGIC superfamily. Our studies reveal that the voltage sensor of the HCN channel has an intrinsic ability to drive pore opening in either direction and that the extra length of the HCN S4 is not the primary determinant for hyperpolarization activation. Tight interactions at the HCN voltage sensor-pore interface drive the channel into an hERG-like inactivated state, thereby obscuring its opening upon depolarization. This structural element in synergy with the HCN cyclic nucleotide-binding domain and specific interactions near the pore gate biases the channel toward hyperpolarization-dependent opening. Our findings reveal an unexpected common principle underpinning voltage gating in the VGIC superfamily and identify the essential determinants of gating polarity.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Animais , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Camundongos , Domínios Proteicos , Engenharia de Proteínas , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...